グランド・セフト・オート 自動運転車の教材に
超現実的なコンピューター・ゲームは、現実世界について、AIのアルゴリズムが効率的に学習する手段になることがある。 by Will Knight2016.09.13
グランド・セフト・オートのプレイに何千時間費やしても、人間の役に立つかは疑問だ。しかし、コンピューターをずっと賢くするのにはかなり役立つかもしれない。
https://www.youtube.com/watch?v=hvlHnMkdflI
複数の研究グループは現在、高速で走る自動車とさまざまな犯罪行為を扱う大人気ゲームを利用して、自律自動車が現実の道路で走行するためのアルゴリズムを訓練している。
コンピューターが暴力的なコンピューター・ゲームをプレイして悪い行動を学習する機会は滅多にない。しかしグランド・セフト・オートの驚くほどリアルな風景やその他の仮想世界は、機械が現実世界のさまざまな構成要素を正しく認識する上では役に立つ。
機械学習によって、コンピューターは人間と同じように顔や声を認識できるようになった。しかし、この手法には膨大な量のデータが必要だが、十分なデータを集めるには大変な時間がかかる。ゲームで用いられる風景は非常にリアルなので、現実世界の画像から作られるのと同じくらい良質な訓練データが得られる。
研究者はアルゴリズム用の訓練データを作るために、すでにゲームエンジンで3Dシミュレーションを構築している (“To Get Truly Smart, AI Might Need to Play More Video Games”参照)。しかし、写真のようにリアルな画像が何時間分もある既製のコンピューター・ゲームを使えば、大量の訓練データが簡単に集まる。
…
- 人気の記事ランキング
-
- What is vibe coding, exactly? バイブコーディングとは何か? AIに「委ねる」プログラミング新手法
- A Google Gemini model now has a “dial” to adjust how much it reasons 推論モデルは「考えすぎ」、グーグルがGeminiに調整機能
- Meet the researchers testing the “Armageddon” approach to asteroid defense 惑星防衛の最終戦略 科学者たちが探る 「核爆発」研究の舞台裏
- Anthropic can now track the bizarre inner workings of a large language model 大規模言語モデルは内部で 何をやっているのか? 覗いて分かった奇妙な回路