人の顔や表情を取り込んで、映像内に登場する人物の身体に重ね合わせることが最近では可能になっている。特に、ポルノ女優の顔を有名人の顔に取り替える「ディープフェイク」と呼ばれるアダルト動画がレディット(Reddit)やフォーチャン(4Chan)などのWebサイトに投稿され始めている。
この現象は大きな影響を引き起こす可能性がある。偽造の犠牲になった人の評判が傷つくという問題だけではない。顔の入れ替えは生体認証システムに支障をきたし、あらゆる映像に対する社会的信頼を損なわせる脅威となる。
したがって、この種の偽造映像を素早く正確に判別する方法が必要とされているのだ。
独ミュンヘン工科大学の大学院生であるアンドレアス・ロスラーの研究グループが、顔交換(フェイススワップ)した映像を自動的に判別できる深層学習システムを開発した。この新しい手法は、Web上に偽造映像が公開された時の判別に役立つ可能性がある。
だが、この研究の成果には落とし穴がある。フェイススワップ映像の判別を可能にする深層学習手法は、何よりも、フェイススワップ映像の品質改善に利用できるのだ。したがって、ロスラーたちの手法は偽物の検出をさらに困難にする可能性がある。
今回の手法は、フェイススワップ判別にスポットを当てて訓練した深層学習アルゴリズムを使用する。こうしたアルゴリズムの学習には、よい例を大量に集めた注釈付きデータセットが必要不可欠だ。そのような大規模データセットはこれまで存在しなかった。
そこで研究チームは、フェイススワップ映像とオリジナル映像の大規模データセットの作成から取り掛かった。この段階では、一部のメンバーが開発したフェイスツーフェイス(Fa …