エヌビディアが機械学習の「パラダイムを覆す」新手法を研究中
知性を宿す機械

More efficient machine learning could upend the AI paradigm エヌビディアが機械学習の「パラダイムを覆す」新手法を研究中

機械学習アルゴリズムを訓練するには膨大なデータが必要だ。少量のデータで訓練できるようになれば現在のパラダイムはひっくり返る。精度を損なうことなくアルゴリズムを小型化する研究を進めていることをエヌビディアの主任科学者が明かした。 by Yiting Sun2018.02.06

グーグルが1月に「クラウド・オートML(Cloud AutoAI)」と呼ばれる新しいサービスを開始した。機械学習ソフトウェアを開発する上での難所のいくつかを自動化できるというものだ。このプロジェクトに取り組んでいる間、強力なアルゴリズムを訓練するために、グーグルの研究者たちは時に800基ものグラフィック・プロセッサー(GPU)を同時に稼働させなければならなかった。

1つか2つの例を目にしただけでコーヒーカップを識別できる人間と違って、シミュレートされたニューロンを基礎とする人工知能(AI)ネットワークが何らかの物体を識別するには、何万もの例が必要となる。そうした方法で身の回りのあらゆる物を認識するように学習しようとすると想像すれば、AIソフトウェアが膨大な演算能力を必要とする理由が分かってくるはずだ。

こちらは会員限定の記事です。
メールアドレスの登録で続きを読めます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。
こちらは有料会員限定の記事です。
有料会員になると制限なしにご利用いただけます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。