エヌビディアが機械学習の「パラダイムを覆す」新手法を研究中
機械学習アルゴリズムを訓練するには膨大なデータが必要だ。少量のデータで訓練できるようになれば現在のパラダイムはひっくり返る。精度を損なうことなくアルゴリズムを小型化する研究を進めていることをエヌビディアの主任科学者が明かした。 by Yiting Sun2018.02.06
グーグルが1月に「クラウド・オートML(Cloud AutoAI)」と呼ばれる新しいサービスを開始した。機械学習ソフトウェアを開発する上での難所のいくつかを自動化できるというものだ。このプロジェクトに取り組んでいる間、強力なアルゴリズムを訓練するために、グーグルの研究者たちは時に800基ものグラフィック・プロセッサー(GPU)を同時に稼働させなければならなかった。
1つか2つの例を目にしただけでコーヒーカップを識別できる人間と違って、シミュレートされたニューロンを基礎とする人工知能(AI)ネットワークが何らかの物体を識別するには、何万もの例が必要となる。そうした方法で身の回りのあらゆる物を認識するように学習しようとすると想像すれば、AIソフトウェアが膨大な演算能力を必要とする理由が分かってくるはずだ。
…
- 人気の記事ランキング
-
- AI reasoning models can cheat to win chess games 最新AIモデル、勝つためなら手段選ばず チェス対局で明らかに
- Promotion Innovators Under 35 Japan × CROSS U 好評につき第2弾!研究者のキャリアを考える無料イベント【3/14】
- Your boss is watching 機械化する人間たち—— 「見えない目」が変える 職場の風景
- OpenAI just released GPT-4.5 and says it is its biggest and best chat model yet 限界説に挑むオープンAI、最後の非推論モデル「GPT-4.5」
- One option for electric vehicle fires? Let them burn. EV電池火災、どう対応?「燃え尽きるまで待つしかない」と専門家