KADOKAWA Technology Review
×
ニュース Insider Online限定
How DeepMind’s Memory Trick Helps AI Solve New Problems

グーグル・ディープマインド、AIの学習速度を爆速化

学習速度は、AIが人間にかなわない分野だ。古典的なビデオゲームでも、人間なら2時間でできるようになることが、最強のAIシステムでも200時間かかることがある。しかし、グーグルの子会社ディープマインドは、人間の脳の手法を模倣することで、学習時間を大幅に短縮化した。 by Emerging Technology from the arXiv2017.03.17

知性を宿す機械は人間の背中を追いかけている。深層学習機械は、顔認識やビデオゲーム、さらには古代中国を起源とする囲碁等のタスクなら、すでに人間の能力を超えている。そのため、人間はすでに機械に追い抜かれてしまったと考えても無理はない。

だが、進歩はそれほど早くない。知性を宿す機械がいまだに人間に後れを取っている重大な分野がある。学習速度だ。たとえば、古典的なビデオゲームの習得で、人間ならわずか2時間でできるようになることが、最高の深層学習機械でさえ同じ技能レベルに達するまでに約200時間かかる。

そこでコンピューター科学者は、機械の学習速度を上げる方法を何としても見つけたがっている。

3月16日、グーグルの子会社がディープマインド(ロンドン)のアレキサンダー・プリッツェル研究員のチームが、まさにその方法を見つけたと発表した。研究チームが開発した深層学習機械は、急速に新しい経験を取り込み、経験に基づいて行動できる。結果としてこの機械は他の機械よりかなり速く学習でき、そう遠くない将来、人間に匹敵するだけの可能性を秘めている。

まず、背景について簡単に説明しておこう。深層学習はニューラル・ネットワークの複数の層を使ってデータ内のパターンを探す。ひとつの層がある認識のパターンを見つけると、その情報を次の層に送る。さらにその層がその信号内のパターンを探して、といった具合に学習するのだ。

たとえば顔認識では、最初の層がある画像内の境界(エッジ)を探し、次の層は境界の円形のパターン(たとえば目や口によってできる円)を探し、その次の層は三角形のパターン(たとえば2つの目と1つの口によってできる三角形)を探す。すべてのパターンがあると、最終的に、顔が見分けられた、と出力されるのだ。

もちろん、悪魔は細部に宿っている。さまざまなフィードバック・システムがあり、層間のつながりの強さなど、さまざまな内部パラメーター …

こちらは有料会員限定の記事です。
有料会員になると制限なしにご利用いただけます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。
人気の記事ランキング
日本発「世界を変える」U35イノベーター

MITテクノロジーレビューが20年以上にわたって開催しているグローバル・アワード「Innovators Under 35 」。2024年受賞者決定!授賞式を11/20に開催します。チケット販売中。 世界的な課題解決に取り組み、向こう数十年間の未来を形作る若きイノベーターの発掘を目的とするアワードの日本版の最新情報を随時発信中。

特集ページへ
MITTRが選んだ 世界を変える10大技術 2024年版

「ブレークスルー・テクノロジー10」は、人工知能、生物工学、気候変動、コンピューティングなどの分野における重要な技術的進歩を評価するMITテクノロジーレビューの年次企画だ。2024年に注目すべき10のテクノロジーを紹介しよう。

特集ページへ
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る