テスラの自動運転システムが関与した最近の2件の事故を受けて、事故発生時に機械学習に基づくコンピュータシステムをどう検証し、調査すべきかの課題が浮上している。
5月にフロリダで起きた死亡事故では、システムがトラックを認識できず、自動運転中のテスラ モデルSがトラックに衝突した。自動運転中でも道路状況に注意して欲しいとテスラは呼びかけているが、自動運転で交通事故を減らせると宣伝していたことを考えると、責任放棄ともいえる。声明でテスラは、太陽がまぶしく、システムが誤動作した可能性に触れている。7日、NHTSA(米国国家道路交通安全局)は、先週ペンシルベニア州で今度はテスラ モデルXが両サイドの壁に衝突してひっくり返った、別の事故も調査中であると発表した。ドライバーは、衝突時、自動運転中だったと語っている。
テスラは、自動運転の仕組みを詳細には公開していない。しかし、自動車のシステムを訓練するため、特に視覚情報の認識に機械学習を利用しているのはほぼ確実だ。また、テスラを含む自動車メーカーにテクノロジーを提供しているイスラエル企業モービルアイのソフトは、映像内の車両や車線、標識、その他の物体を認識するのに深層学習を使っている。
手作業のプログラミングでは困難な動作でも、機械学習であれば操作をコンピューターに教えるのは簡単だ。十分な数のパターンを提示して深層学習の人工神経回路を訓練すれば、写真や映像に映る犬をかなり正確に認識できるようになる。だが、プログラミングが不要になったことで、システムの仕組みを理解するのは難しくなった。
神経回路は、判断の信頼性を測定できるようにも設計できる。しかし複雑な計算を経て得られた機械の判断を理解するために、神経回路を分析するのが簡単であるはずがない。つまり、意図しない挙動はまず予測できないし、不具合が起きても、原因はまず説明できない、と思った方がよい。たとえばシステムが写真内の物体を誤認したとき、画像認識システムの何が誤認をもたらしたかを理解するのは、不可能とまでいえないが、相当難しい。機械学習には、他の手法にも同様の課題がある。
もちろん、規制当局は、機械学習を使った運転システムを評価する方法を検討しなければならない。逆に、規制当局が、複雑化する一方の自動運転車を調査できなくなる可能性も自動車メーカーは認識している。トヨタが投資しているMITの研究プロジェクトでは、何か起きた後に、自動運転車に自分の行動を説明させる方法を探っている。トヨタは他にも、自動運転車の課題に関わる研究プロジェクト数件に資金を提供している。
深層学習を使えば、単に物体を認識させるだけではなく、センサーから取得したリアルタイムデータで車を制御できる。実際、プリンストン大学のチームが設計した自動運転システムは、大部分が深層学習に基づいている。また、自動車メーカー向けにもハードウェアを製造している半導体メーカーエヌビディアの研究者は、完全に深層学習で動作する自動運転車を披露している。
MITのカール・ヤグネンマ主任研究員(自動化タクシーに取り組む新興企業ヌートノミーの創業者)は、センサーから取得した生データで自動車を制御するエンドツーエンド型の深層学習システムに事故の原因を言わせるのは難しいと語る。
「自動車を安全に運転しているときのセンサーデータで学習した、中身のわからないアルゴリズムを開発しているのと同じです。自動車が安全でない状況に陥ったとき、機械がどう制御するかを予測するのは非常に難しいのです」
人間は、たとえば交差点の向こう側の車両が一時的に視界から消えても、直前までの軌道から障害物になりうると推測できる。マシンビジョンが専門のスタンフォード大学のシルビオ・サバレーゼ助教は、さまざまな形態の情報から結論を導く人間の能力は従来の機械学習に備わっていないことが弱点だという。
「人間はたくさんの文脈情報を使っていますが、現在の学習メカニズムにはうまくできません」
自動運転テクノロジーの関係者は、誰もがテスラの事故の結末を見守っている。結論がどうであれ、テクノロジーや安全性に対する一般大衆の受け止め方が気になるところだ。ヤグネンマ主任研究員は、事故に対する短絡的な反応を気にかける。
「テクノロジーの進化に水をさされる分岐点にいるのです。たった一度の事故で考えの足りない開発だと決めつけられるのは、ハードルが高すぎますよ」