現代の人工知能(AI)革命は、ある無名の研究コンテストから始まった。それは年に一度の「イメージネット(ImageNet)・チャレンジ」というコンテストの3年目となる、2012年のことだった。このコンテストで参加チームは、動物や風景から人間まで1000個の対象物を認識する、コンピューター・ビジョンシステムの構築に挑戦する。
コンテストの最初の2年間は、最優秀チームでも正確度は75%にも達しなかった。しかし、3年目には1人の教授とその生徒2人の3人グループが、突然この限界を打ち破った。2位以下に10ポイント以上の驚異的な差をつけてコンテストを制したのだ。その教授こそがジェフリー・ヒントン(トロント大学)であり、このとき使われた手法が深層学習(deep learning)と呼ばれるものだった。
ヒントン教授は1980年代から深層学習に取り組んでいたが、当時はデータと計算能力が不足していたために実用的ではなかった。深層学習に対するヒントン教授の揺るがぬ信念は、最終的に大きく実を結んだ。4年目となる翌年のイメージネット・チャレンジではほぼすべてのチームが深層学習を使用し、奇跡的な進歩を遂げたのだ。ほどなくして深層学習は、画像認識を超えた幅広い産業で応用されるようになった。
ヒントン教授は2019年、AIへの基礎的な貢献を果たしたとして、ヤン・ルカン、ヨシュア・ベンジオと共にチューリング賞を受賞している。
深層学習分野の状況や、AIは次にどこに向かうべきかなのか、ヒントン教授に話を聞いた。なお、インタビューは内容を明確にするため、編集・要約されている。
◆◆◆
——あなたは、深層学習さえあれば人間の知能のすべてを再現できると考えていますよね。どうしてそこまで確信しているのですか?
確かに深層学習はどんなことでもできるようになると信じていますが、一方でかなり多くの数の概念的なブレイクスルーが必要となると思います。例えば、2017年にアシシュ・バスワニの研究チームが「トランスフォーマー(transformer)」を発表しました。トランスフォーマーは、単語の意味を表す非常に優れたベクトルを導き出すもので、これは概念的なブレイクスルーだったと言えます。今では、ほとんどあらゆる最も優れた自然言語処 …
- 人気の記事ランキング
-
- The winners of Innovators under 35 Japan 2024 have been announced MITTRが選ぶ、 日本発U35イノベーター 2024年版
- Kids are learning how to make their own little language models 作って学ぶ生成AIモデルの仕組み、MITが子ども向け新アプリ
- AI will add to the e-waste problem. Here’s what we can do about it. 30年までに最大500万トン、生成AIブームで大量の電子廃棄物
- This AI system makes human tutors better at teaching children math 生成AIで個別指導の質向上、教育格差に挑むスタンフォード新ツール