今までにはなかった自動運転車が数カ月以内に道路を走るようになるだろう。従来のほとんどの自動運転車は、遭遇する可能性がある状況に対応するようプログラムされているが、この自動車は違う。シミュレーションにより、事故が起こりうる場合に安全に対処する方法を自分で学習するのだ。
この自動車は、強化学習(動物が報酬とそれに至る行動を関連付けて学習することから着想を得ている)により、混雑した交差点、渋滞した幹線道路、すし詰めのロータリーなどを通り抜けるように学習する。
多くの自動車メーカーに車両安全システムを供給しているイスラエル企業のモービルアイ(Mobileye)は、先週ラスベガスで開催されたコンシューマー・エレクトロニクス・ショー(CES)で、ドイツの自動車メーカーBMW、半導体メーカーのインテルと共同で2017年下期にこの手法を路上で試験すると発表した。
強化学習では、人間はコンピューターの動作をプログラム・コードで記述したり、学習用の特定事例を与えたりしない。その代わり、ある結果を最も確実に導く行動の観点で、コンピューターは自分でプログラムを変更して実験する。自動運転の場合、学習目標は、安全かつスムーズにロータリーに進入したり、交通の流れに合流したりすることだろう。強化学習は、アタリのビデオゲームや囲碁で超人的技能に到達したことで、人間によるプログラムでは攻略が困難なことを処理するコンピューターの訓練に効果的だと証明された。
コネクティッド・テクノロジーと自動化テクノロジーの標準の開発と確立を担う非営利団体アメリカン・センター・フォー・モビリティ(American Center for Mobility)のジェームス・マドクス・ディレクターは、 人間のドライバーとの機械の関わり方が、自動運転車の主要課題になるだろうという。目標とすべき自動運転システムでは「1台の車両の経験だけでなく、他のドライバーからも学習する必要があります」とマドクス・ディレクターはいう。モービルアイは、異なる自動車メーカーの自動運転車から収集したデータを共有するプラットフォームも開発中だ。運転情報がすぐに利用できれば、自動運転テクノロジーの進歩に重要だと示せるかもしれない、とマドクス・ディレクターはいう。
自動運転テクノロジーは、2017年のCESの慌ただしい 発表とデモの中でも注目された分野だ。トヨタは、バーチャル・アシスタントが登場する自動運転のコンセプトカーを展示した。半導体メーカーのエヌビディアは、自動運転用に開発した強力な新SoC(システム・オン・チップ:システム全体をチップ化した半導体製品)を紹介した。自動車部品メーカーのデルファイは、モービルアイと共同開発した自動運転のアウディを実演した。
モービルアイは、ここ最近、自社の学習システムに取り組んでいる。モービルアイのシャイ・シャレフ=シュワルツ副社長(技術部門担当)は、バルセロナ(スペイン)で2016年12月に開催された人工知能関連の学会で発表し、強化学習によって、自動運転車両にさまざまな巧みな運転技能を搭載できると述べ、モービルアイが強化学習で取り組んでいる、ある難しい運転状況のデモを紹介した。シミュレーションでは、バーチャルな幹線道路2本の交差する地点で、少数の車両が逆方向から同時に合流してくる状況を再現している。
「守りと攻めの行動の間でバランスを取る必要があります。防御的すぎると進めませんし、攻撃的すぎると他の車と衝突します。他のドライバーとのタイミングを図る必要があるのです。ルールをただ守るわけにはいきません。ルールを破るルールを知る必要があるのです」