深層学習の限界突破へ、MITなどが「ハイブリッドAI」を開発
MIT、IBM、ディープマインドなどの研究チームは、世界に関する知識を明示的にコーディングする「シンボリスト」と、生物の脳に着想を得たニューラルネットで世界を学習する「コネクショニスト」の2つのアプローチを取り入れた、ハイブリッドAIシステムを開発した。訓練データがはるかに少なくて済むことから、AIの新たな用途が期待される。 by Will Knight2019.04.10
人工知能(AI)が誕生してから数十年になるが、この間、AI分野の研究は大きく2つの陣営に分類されてきた。「シンボリスト」が論理的な規則と世界の表象をコーディングすることで知性を宿す機械を構築しようとする一方で、生物学に触発された「コネクショニスト」は、人工ニューラル・ネットワークを構築することで世界について学ぼうとしてきた。2つのグループはこれまで、相性が良いといえる関係ではなかった。
だがマサチューセッツ工科大学(MIT)とIBM、ディープマインド(DeepMind)の研究チームによる最新の論文は、2つのアプローチを組み合わせた力を示しており、AIの将来の方向性を指し示すものと見られている。
ジョシュア・テネンバウム教授率いるMITの脳・知性・機械センターのチームは、「ニューロシンボリック・コンセプト・ラーナー(NS-CL)」と呼ばれるコンピューター・プログラムを作成した。子どもが周囲を見回したり話したりするように、世界(簡易版ではあるが)について学ぶプログラムだ。
NS-CLシステムはいくつかの部分から構成される。1つのニューラル・ネットワークは、少数の物体で構成される一連の場面に基づいて訓練されている。 もう1つのニューラル・ネットワークは、この場面に関する一連の文章に基づく問答で訓練されている。「問:球の色は何色ですか?」、「答:赤」といった具合だ。このネットワークは、自然言語の質問を、ある場面で実行されると答えを返す単純なプログラムに対応付けることを学ぶ。
NS-CLシステムはまた、「物体」 …
- 人気の記事ランキング
-
- China figured out how to sell EVs. Now it has to deal with their aging batteries. 中国でEV廃車ラッシュ、年間82万トンのバッテリー処理追いつかず
- Quantum navigation could solve the military’s GPS jamming problem ロシアGPS妨害で注目の「量子航法」技術、その実力と課題は?
- Text-to-image AI models can be tricked into generating disturbing images AIモデル、「脱獄プロンプト」で不適切な画像生成の新手法
- How social media encourages the worst of AI boosterism GPT-5が「未解決問題解いた」 恥ずかしい勘違い、なぜ?