AI生成のフェイク画像、鑑定歴20年の教授が挑む新アプローチ
知性を宿す機械

Deepfake-busting apps can spot even a single pixel out of place AI生成のフェイク画像、鑑定歴20年の教授が挑む新アプローチ

AIが生成したディープフェイク画像を見破るテクノロジーをダートマス大学の教授が開発中だ。独自のアルゴリズムで画像が撮影された瞬間の整合性を検証。スマホメーカーやソーシャル・メディア企業と組んでディープフェイクに対抗したい考えだ。 by Karen Hao2018.12.11

CGI(Computer Generated Imagery)で写真のようなリアルな画像をゼロから作る(困難でコストもかかる)にせよ、フォトショップをマスターして既存の画像を違和感なく修正するにせよ、写真や動画の偽造には手間がかかる。

だがいまでは違う。AI生成画像の出現により、画像や動画を修正して本物そっくりに仕上げるのは誰にとっても簡単になった。MITテクノロジーレビューのウィル・ナイト上級編集者は先日、既製ソフトウェアを使ってテッド・クルーズ上院議員のフェイク動画を作成した。動画には少し不自然な部分もあったが、改善されるのも時間の問題だろう。

同じようなテクノロジーを使って、「ディープフェイク」と呼ばれる動画や写真が生成されている。ディープフェイクは真実を歪め、視聴者を混乱させ、既存の文章ベースのフェイクニュースよりも遥かに大規模な意見の対立を招く可能性を持つ。

20年にわたってフェイク画像を見破り続けてきたダートマス大学のハニー・ファリド教授(コンピューター科学)は、こうしたディープフェイクに懸念を示す。「私たちはまだ(ディープフェイクに対する)準備が整っていません」。だがファリド教授は、問題に対する人々の意識の高まりと新しいテクノロジーの発展により、本物の画像と偽造された創作物との違いが見分けやすくなるのではないか、との期待を持っている。

ファリド教授によると、画像を見分けるためには主に2つの方法があるという。1つは、画像に対する修正の跡を見つける方法だ。画像フォレンジック(鑑定)の専門家はコンピューターを用いた手法により、ピクセルやメタデータが改変されていないかどうかを見つけだす。たとえば、物理法則に反した影や反射を探したり、画像ファイルが何回圧縮されたかをチェックし、そのファイルが複数回保存されたかどうかを見分けたりといった作業をする。

もう1つのより新しい手法は、その画像が撮影された瞬間の整合性を検証するものだ。これは、撮影者がデバイスの位置データやタイム・スタンプを改ざんしようとしていないことを証明するために、いくつものチェックが必要となる。カメラの座標、時間帯、高度、近くのWi-Fiネットワークなどはすべてお互いの裏付けとなっているか、画像の光の屈折は3次元的な風景と一致しているか、あるいは誰 …

こちらは有料会員限定の記事です。
有料会員になると制限なしにご利用いただけます。
有料会員にはメリットがいっぱい!
  1. 毎月120本以上更新されるオリジナル記事で、人工知能から遺伝子療法まで、先端テクノロジーの最新動向がわかる。
  2. オリジナル記事をテーマ別に再構成したPDFファイル「eムック」を毎月配信。
    重要テーマが押さえられる。
  3. 各分野のキーパーソンを招いたトークイベント、関連セミナーに優待価格でご招待。