KADOKAWA Technology Review
×
【3/14東京開催】若手研究者のキャリアを語り合う無料イベント 参加者募集中

ニューズラインエマージング・テクノロジーの最新情報をお届け。

強化学習ベースの価格設定アルゴリズムに「談合」の恐れ
Sean Gallup/Getty
Pricing algorithms can learn to collude with each other to raise prices

強化学習ベースの価格設定アルゴリズムに「談合」の恐れ

アマゾンで買い物をするとき、購入したサービスや商品の価格を設定したのは、おそらく人間ではなくアルゴリズムだ。自動化システムがますます手ごろで簡単に実装できるようになるにつれ、価格設定アルゴリズムはあらゆるオンライン販売で使われるようになってきた。

航空会社やホテルは長らく機械を使って価格を設定してきたが、価格設定システムは進化しており、ルール・ベースのプログラムから強化学習ベースのプログラムへと移行し、価格を決定するロジックはもはや人間がコントロールするものではなくなった。

強化学習はAI(人工知能)エージェントに対し、特定の目標に向けて罰と報酬を使って動機付けする機械学習のサブセットである。アルファ碁(AlphaGo)が、囲碁で最強の棋士を打ち破るのに強化学習を使ったのは有名だ。価格設定システムは、たとえば、全体的な利益を最大化するなどの目標を与えられ、その後、シミュレーション環境でさまざまな戦略を実験し、最適な戦略を見付ける。だが、 ある新しい論文では、このシステムが大きな問題を起こす可能性を指摘している。強化学習を使った価格設定システムは、すぐに「談合」を学んでしまうのだ。

イタリアのボローニャ大学の研究者は、単純な強化学習ベースの価格設定アルゴリズムを2つ作り、制御環境へ投入した。その結果、2つの完全に自立したアルゴリズムはお互いのふるまいに反応することを学び、 単独で動作していたら付けるはずの価格より商品価格を高く引き上げることが分かった。

「もっとも心配な点は、2つのアルゴリズムが共同行為の証拠をまったく残さなかったことです」と研究者は書いている。「アルゴリズムは、自身が動作する環境に対する事前知識なしで、お互いにコミュニケーションをとることもなく、談合するように特に設計されたわけでも指示されたわけでもなく、純粋に試行錯誤によって談合を学びました」。強化学習による価格設定アルゴリズムは、商品の価格を上昇させ、最終的には消費者の利益を害するリスクがある。

カーレン・ハオ [Karen Hao] 2019.02.14, 8:55
MITTRが選んだ 世界を変える10大技術 2025年版

本当に長期的に重要となるものは何か?これは、毎年このリストを作成する際に私たちが取り組む問いである。未来を完全に見通すことはできないが、これらの技術が今後何十年にもわたって世界に大きな影響を与えると私たちは予測している。

特集ページへ
MITテクノロジーレビューは有料会員制サイトです
有料会員になると、毎月150本以上更新されるオリジナル記事が読み放題!
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る