KADOKAWA Technology Review
×
【冬割】 年間購読料20%オフキャンペーン実施中!

ニューズラインエマージング・テクノロジーの最新情報をお届け。

転移学習でチープなロボットの能力を向上する新研究
Hero Images/Getty
AI could help make robots cheaper without limiting their abilities

転移学習でチープなロボットの能力を向上する新研究

転移学習とは、あるコンテキストから得た知識を別のコンテキストで使う能力である。これを使えば、安価なロボットに、高価なロボットと同様な任務を遂行することを教えられるかもしれない。

ロボット工学が現在直面している最も難しい課題の1つは、実験室の外でもロボットが円滑に作動できるようにすることだ。研究では、ロボットに高価なセンサーを装備し、位置感覚を学ばせるのに理想的な環境を提供できる。だが実世界で同様のセンサーを使っていては、消費者にとっては高くつくうえ、フレンドリーではない。しかも煩雑だし、不完全でもある。

ブリュッセル自由大学とアムステルダム自由大学の研究チームは、問題解決の手段として、転移学習として知られる一種の機械学習に目を向けた。転移学習とは、あるコンテキストで学習したことを別の文脈に適用するプロセスである。転移学習を使えば、実験室でロボットを制御するアルゴリズムを、実社会でロボットを制御できるように適応させられるかもしれない。つまり、優れたセンサーと優れた環境という有利な立場でロボットを訓練し、訓練で学ばせたことを、安価なセンサーと劣悪な環境しかない場合でも活用できるわけだ。

このアイデアを試すため、研究チームはシミュレーション環境でロボットを作成し、まず8個の近接センサーを使ってナビゲートさせ、次に、単一のカメラでナビゲートさせてみた。その結果、単一カメラによる場合では、転移学習を使って意思決定するロボット制御アルゴリズムの方が、転移学習をまったく使わなかったときよりも、はるかに早く部屋中のナビゲートの仕方を学ぶことを発見した。さらに、意思決定ではなく、訓練中に転移学習を使用した場合には、一層早かった。

カーレン・ハオ [Karen Hao] 2019.07.22, 11:38
日本発「世界を変える」U35イノベーター

MITテクノロジーレビューが20年以上にわたって開催しているグローバル・アワード「Innovators Under 35 」。2024年受賞者決定!授賞式を11/20に開催します。チケット販売中。 世界的な課題解決に取り組み、向こう数十年間の未来を形作る若きイノベーターの発掘を目的とするアワードの日本版の最新情報を随時発信中。

特集ページへ
MITテクノロジーレビューは有料会員制サイトです
有料会員になると、毎月150本以上更新されるオリジナル記事が読み放題!
【冬割】実施中! 年間購読料20%オフ!
フォローしてください重要なテクノロジーとイノベーションのニュースをSNSやメールで受け取る