フラッシュ2024年2月29日
-
人工知能(AI)
画像診断AIに落とし穴、医学的に無関係の領域に注目して診断
by MITテクノロジーレビュー編集部 [MIT Technology Review Japan]東北大学の研究チームは、医用画像診断AI(人工知能)が診断を下す際に、答えは正しくても、AIが診断に至った根拠と専門医の所見が必ずしも一致しているとは限らないことを明らかにした。医学的に妥当でない不適切な根拠に基づく診断は、思わぬ結果を招く危険があるため、このような危険性を認識して対策することで、より安全性の高いAIの臨床応用が求められる。
研究チームは今回、AIが医用画像中のどこに注目して診断したのかを可視化する技術を用いて、その注目領域の医学的な妥当性を詳しく解析。先行研究で高性能を達成した深層学習モデルの注目領域と、医師の診断に基づく重要領域を比較した結果、深層学習モデルの高い分類性能に反して、その注目領域の30~80%は医学的な重要領域と無関係であり、両者に大きな齟齬があることがわかった。
医用画像診断へのAIの応用が進められているが、AIが訓練データから何を学んだかなどの詳細はこれまで十分に解明されていなかった。同研究はAIによる医用画像診断の医学的な妥当性に懸念があることを示しており、今後、新たな訓練法の開発など、さらなる検証と対策を進める必要がある。
研究論文はジャーナル・オブ・イメージング・インフォマティクス・イン・メディスン(Journal of Imaging Informatics in Medicine)誌に、2024年2月9日付けで掲載された。
(中條)
-
- 人気の記事ランキング
-
- AI crawler wars threaten to make the web more closed for everyone 失われるWebの多様性——AIクローラー戦争が始まった
- Promotion Innovators Under 35 Japan × CROSS U 好評につき第2弾!研究者のキャリアを考える無料イベント【3/14】
- Inside the race to archive the US government’s websites 米政府系サイトが続々閉鎖、 科学者らが緊急保存作戦
- Useful quantum computing is inevitable—and increasingly imminent それでもなお、 量子コンピューターが 人類に必要な理由
- Supersonic planes are inching toward takeoff. That could be a problem. 超音速旅客機が再離陸に向けて加速、環境との両立は可能か?