フラッシュ2024年2月16日
-
生物工学/医療
MRI画像から精神病発症リスクを機械学習で判別=東大など
by MITテクノロジーレビュー編集部 [MIT Technology Review Japan]東京大学、富山大学、カリファルニア大学サンフランシスコ校、マウントサイナイ医科大学などの研究グループは、機械学習で脳MRI画像データから精神病発症リスクを判別するシステムを開発した。テスト用データセットを対象とした場合で85%、独立した確認データセットを対象とした場合でも70%以上の正答率が得られたという。
従来の機械学習を利用して精神病発症リスクを判別するシステムは、MRI画像を撮影する機種の違いに起因する画像の差と、思春期に発生する脳構造の大きな変化により、精度が不十分だった。研究グループが今回利用したのは、国際コンソーシアム(Enhancing Neuro Imaging Genetics through Meta-Analysis for Clinical High Risk:ENIGMA CHR)に集積されたMRI画像。内訳は精神病ハイリスク群が1165名分で、健常対照群が1029名。精神病ハイリスク群のうち、MRI撮影後に精神病発症を確認できたのは144名、発症しなかったのは793名、追跡不能だったのは228名となる。
この画像群を対象に、neuroComBat法を利用してMRI装置間の差を補正し、健常対照群のデータのみを対象として一般化加法モデルを適用して、脳構造の年齢と性別による非線形効果、つまり男女別の健常思春期脳発達を解明した。その上で精神病ハイリスク群の画像データに結果を適用し、標準からの逸脱度を抽出。この値を利用して、精神病ハイリスク群のうち、画像撮影後に精神病を発症した群のデータと、健常対照群のデータに、勾配ブースティング回帰木という機械学習の手法を利用してシステムを構築した。
研究成果は2月9日、モレキュラー・サイキアトリー(Molecular Psychiatry)誌にオンライン掲載された。
(笹田)
-
- 人気の記事ランキング
-
- The winners of Innovators under 35 Japan 2024 have been announced MITTRが選ぶ、 日本発U35イノベーター 2024年版
- Kids are learning how to make their own little language models 作って学ぶ生成AIモデルの仕組み、MITが子ども向け新アプリ
- AI will add to the e-waste problem. Here’s what we can do about it. 30年までに最大500万トン、生成AIブームで大量の電子廃棄物
- This AI system makes human tutors better at teaching children math 生成AIで個別指導の質向上、教育格差に挑むスタンフォード新ツール