
多くの人工知能(AI)モデルは、より正確な答えを出すために、人間がラベル付けした膨大なデータを必要とする。メタAI(Meta AI)の研究員であるイシャン・ミスラ(31)の研究によって、人間がラベル付けをしなくても、視覚的データのみでAIモデルの訓練が可能であることが示された。ミスラ研究員は、このような自己教師ありモデルによって、AIで解くことのできる問題の種類を大幅に増やせると考えている。ミスラ研究員は、「医用画像などの分野では、ラベル付けにコストがかかります。このような分野では、自己教師ありモデルが、はるかに低コストで、すばやくAIモデルを作成するのに大きく役立つ可能性があります」と話す。「また、自己教師ありモデルならAIモデルに、人間による監督なしで、次々と入力されてくるデータを観察させて連続的に新たなスキルを学ばせることもできます」。この利点は、常に変化する環境の中で稼働するロボットにとって、特に有用な可能性がある。
- 人気の記事ランキング
-
- AI crawler wars threaten to make the web more closed for everyone 失われるWebの多様性——AIクローラー戦争が始まった
- Promotion Innovators Under 35 Japan × CROSS U 好評につき第2弾!研究者のキャリアを考える無料イベント【3/14】
- From COBOL to chaos: Elon Musk, DOGE, and the Evil Housekeeper Problem 米「DOGE暴走」、政府システムの脆弱性浮き彫りに
- What a major battery fire means for the future of energy storage 米大規模バッテリー火災、高まる安全性への懸念
- A new Microsoft chip could lead to more stable quantum computers マイクロソフト、初の「トポロジカル量子チップ」 安定性に強み