
患者が生存するか死亡するかは、しばしば迅速かつ正確に診断される。 しかし、感染症に対する致命的な反応である敗血症では、医師が症状を診断できる決定的な単一の検査は存在しない。
ジョンズ・ホプキンズ大学のスーチ・サリア助教授は、既存の医療データを使って、どの患者が最も敗血症にかかる危険性が高いかを予測できないだろうかと考えた。サリア助教授は 患者のデータを分析するためのアルゴリズムを作成し、症例の85%で、敗血症性ショックを発症より平均で1日以上も前に正確に予測した。既存のスクリーニングテストよりも60%改善されたことになる。
(エミリー・ムーリン)
- 人気の記事ランキング
-
- AI crawler wars threaten to make the web more closed for everyone 失われるWebの多様性——AIクローラー戦争が始まった
- Promotion Innovators Under 35 Japan × CROSS U 好評につき第2弾!研究者のキャリアを考える無料イベント【3/14】
- Inside the race to archive the US government’s websites 米政府系サイトが続々閉鎖、 科学者らが緊急保存作戦
- From COBOL to chaos: Elon Musk, DOGE, and the Evil Housekeeper Problem 米「DOGE暴走」、政府システムの脆弱性浮き彫りに
- What a major battery fire means for the future of energy storage 米大規模バッテリー火災、高まる安全性への懸念