当時博士課程生だったレイラニ・バトルは、「フォアキャッシュ(ForeCache)」というツールの開発に携わった。フォアキャッシュは、研究者が膨大なデータを閲覧するためのツールだ。例えば、高解像度の衛星画像をスキャンし、雪に覆われた地域を探すといった作業をスムーズにできるようにする。フォアキャッシュの目標は、ユーザーの待ち時間を短縮し、ストレスを感じることなくデータセット上を行き来したり、拡大縮小したりできるようにすることだ。この目標を達成するには、一般的にユーザーがデータのどの部分を必要とする可能性が高いかを予測し、それを「プリフェッチ(先読み)」という方法を用いる。しかし、何を先読みするべきかを、どのように予測すればよいのだろうか? それには、ユーザーの行動を理解していることが重要だ。
バトルと彼女の同僚たちは、従来より効率的な予測システムを開発した。このシステムは、まずユーザーがどの「分析段階」にいるかの判別を試み、次にどのような表題がついたデータを必要するのかを判断しようとする。予測システムでは、「フォレイジング(foraging:採集)」「センスメイキング(sensemaking:意味づけ)」「ナビゲーション(navigation:移動)」という3つの用語を作った。フォレイジング段階のユーザーは、新しいアイデアを思いつくためにデータを粗い解像度でざっと見ていると推測、センスメイキングは新しいアイデアを検証するための精査をしている段階、そして、ナビゲーションは先の2つの段階の間の移行段階という考えだ。
バトルによると、既存のプリフェッチ・システムと比較すると、ユーザーがどのデータを必要としているかを予測する精度が約25%向上し、待ち時間をほぼ半分にすることができたという。
バトルは、研究者がデータを分析する際により高い質で、より高速に作業をするのに役立つシステムやインターフェイスの設計に、自身のキャリアを捧げてきた。彼女は、調査ツールをさらに視覚的でインタラクティブなものにし、より使いやすいものにしたいと考えている。そのようなツールが実現すれば、科学者は、これまでは見過ごしてしまっていた思いがけない事実を発見できるかもしれない。
- 人気の記事ランキング
-
- Bringing the lofty ideas of pure math down to earth 崇高な理念を現実へ、 物理学者が学び直して感じた 「数学」を学ぶ意義
- Promotion Innovators Under 35 Japan × CROSS U 無料イベント「U35イノベーターと考える研究者のキャリア戦略」のご案内
- Google’s new Project Astra could be generative AI’s killer app 世界を驚かせたグーグルの「アストラ」、生成AIのキラーアプリとなるか
- These AI Minecraft characters did weirdly human stuff all on their own マイクラ内に「AI文明」、 1000体のエージェントが 仕事、宗教、税制まで作った
- AI’s search for more energy is growing more urgent 生成AIの隠れた代償、激増するデータセンターの環境負荷