
ディープマインド(DeepMind)の研究者グレッグ・ウェインは、人間と同じように間違いから学ぶことで上達していくことのできるソフトウェアを設計している。ウェインと共著者は、2016年に発表したネイチャー掲載論文の中で、従来の人工知能に使われていたニューラル・ネットワークでは解けなかった、グラフ問題や、論理パズル、木構造といった問題も新しいソフトウェアによって解けることを示した。
ウェインのコンピューティングにおける洞察は、ヒト脳のニューロン間ではどのように伝達が行われているのか、という関心が基盤となっている。つまり、なぜ、ある構造が特定の知覚や感情、意思を引き起こすのかといった問題だ。現在ウェインは、これらの脳の構造の裏側にあるコンセプトを、頻繁に機械の設計に転用している。
(ケイレブ・ガーリング)
- 人気の記事ランキング
-
- It’s pretty easy to get DeepSeek to talk dirty 「お堅い」Claude、性的会話に応じやすいAIモデルは?
- Promotion Call for entries for Innovators Under 35 Japan 2025 「Innovators Under 35 Japan」2025年度候補者募集のお知らせ
- Google’s new AI will help researchers understand how our genes work グーグルが「アルファゲノム」、遺伝子変異の影響を包括的に予測
- Tech billionaires are making a risky bet with humanity’s future マスク、アルトマン、ベゾス ——テックセレブたちが描く 未来への「危険な賭け」
- What is vibe coding, exactly? バイブコーディングとは何か? AIに「委ねる」プログラミング新手法